
CS106B
Winter 2020

Handout 12
January 24, 2020

Assignment 3: Recursion!

This assignment is all about recursive problem-solving. You’ve practiced writing recursive functions in
Assignment 1 and in section, and now it’s time to take those skills, combine them with the techniques
we’ve covered over the past couple of lectures, and make some pretty impressive pieces of software.

We’ve chosen these problems because we think they’re a great sampler of the different sorts of funda-
mental recursive techniques that we’ve explored. We hope that you find these problems interesting and
get a better feel for what recursion can do!

Due Friday, January 31st at the start of class.

You are permitted to work on this assignment in pairs.

This assignment has four parts to it, and you have seven days to complete it. We recommend that you
start this assignment early and make slow, steady progress throughout the week. Here’s a recommended
timetable:

• Complete the Sierpinski Triangle within a day of this assignment going out.

• Complete Human Pyramids within two days of this assignment going out.

• Complete What Are YOU Doing? within four days of this assignment going out.

• Complete Shift Scheduling within seven days of this assignment going out.

Recursive problem-solving can take a bit of time to get used to, and that’s perfectly normal. Putting in an
hour or two each day working on this assignment will give you plenty of time to adjust and gives you a
comfortable buffer in case you get stuck somewhere.

As always, feel free to get in touch with us if you need any assistance. We’re happy to help out!

You are welcome to work in pairs on this assignment. If you do, please note that

it is not a good idea to have one partner do two of the four parts
of this assignment and to have the other partner do the other two,

that

you are responsible for understanding how to solve all of the problems
given out here, regardless of how you divvy up the work,

and that

if you are working in pairs, both partners should be sitting at the
same computer the whole time the assignment is being worked on.

Historically, students that have split the work in half have had substantially below-average learning
outcomes in the course, especially when it comes to the exams. On the other hand, students that sit
at the same computer and talk through what they’re doing with their partner tend to have substan-
tially above-average learning outcomes in the course.

Stated succinctly, pair programming is about working together, not working separately.

Problem One: The Sierpinski Triangle
One of the most famous self-similar fractals is the Sierpinski triangle. As with many self-similar im-
ages, it’s defined recursively:

• An order-0 Sierpinski triangle is a regular, filled triangle.

• An order-n Sierpinski triangle, where n > 0, consists of three Sierpinski triangles of order n – 1,
each half as large as the main triangle, arranged so that they meet corner-to-corner.

For example, here are Sierpinski triangles of the first few orders:

Order 0 Order 1 Order 2 Order 3 Order 4

Take a minute to confirm that the order-1 Sierpinski triangle indeed consists of three smaller copies of
the order-0 Sierpinski triangle, that the order-2 Sierpinski triangle is formed from three smaller copies
of the order-1 Sierpinski triangle, etc.

As a note, although it might look like we’re drawing a single black triangle with a lot of white triangles
inside it, that’s actually not the case. Every triangle drawn here is black; the white triangles represent
places where no triangle was drawn.

Your task is to implement a function

void drawSierpinskiTriangle(GWindow& window,
 double x0, double y0,
 double x1, double y1,
 double x2, double y2,
 int order)

that takes as input a window in which to draw the Sierpinski triangle, coordinates of the three points
defining the corners of that triangle, and the order of that triangle, then draws the Sierpinski triangle of
that order. If the order parameter is less than zero, use the error() function to report an error.

To draw a triangle, you can use this helpful drawTriangle function that we’ve provided:

void drawTriangle(GWindow& window,
 double x0, double y0,
 double x1, double y1,
 double x2, double y2);

This function takes in a GWindow in which to draw the triangle, along with the coordinates of its three
corners, then draws a black triangle with the specified corner coordinates.

To summarize, here’s what you need to do:

1. Implement the drawSierpinskiTriangle function in Sierpinski.cpp. Don’t forget to
handle the case where the order is negative.

2. Use the “Interactive Sierpinski” option to check your work. In particular, make sure your
triangle looks correct after dragging the corner points around and changing the order of the
triangle via the slider in the bottom of the window.

Once you’ve gotten that working, click “Sierpinski Bungee Jump” to see just how deep the recursion
rabbit hole goes. And yes, that’s your code powering the bungee jump. We’re just specifying coordi-
nates. 😃

2 / 11

Some notes on this problem:

• Draw pictures! The meat of this part of the assignment is figuring out where each triangle’s cor-
ners are, and that’s much easier to do with a schematic in front of you.

• Some helpful math: the midpoint of a line segment whose endpoints are (x₁, y₁) and (x₂, y₂) is lo-
cated at position (

x 1+ x 2

2 , y1+ y2

2) . You may find this useful when determining where the corners of
the smaller triangles are.

• The three corner points of the triangle don’t necessarily have to form an equilateral triangle or be
parallel to the base or side of the window. There isn’t any particular ordering to which corner is
given by (x₀, y₀), which is given by (x₁, y₁), and which is given by (x₂, y₂).

• Repeating a point from earlier – you should only draw the black triangles that make up the Sier-
pinski triangle. The white parts of the triangle are, in a sense, “negative space;” they’re the re-
gions where nothing is drawn.

• The only function you should call to draw things in the window is drawTriangle, which we
mentioned earlier in this handout. You don’t need to, say, call the drawPolarLine function from
lecture or anything like that.

• Don’t forget to call error() in the case where the order is less than zero.

• Our coordinate system uses real numbers. Remember that C++ has separate types for integers
and real numbers and be careful not to mix the two up.

3 / 11

Problem Two: Human Pyramids
A human pyramid is a way of stacking people vertically. With the exception of the people in the bottom
row, each person splits their weight evenly on the two people below them in the pyramid. For example,
in the pyramid to the right, person A splits her weight across
people B and C, and person H splits his weight – plus the ac-
cumulated weight of the people he’s supporting – onto people
L and M. It can be mighty uncomfortable to be in the bottom
row, since you'll have a lot of weight on your back! In this
question, you'll explore just how much weight that is. Just so
we have nice round numbers here, let's assume that everyone
in the pyramid weighs exactly 160 pounds.

Person A at the top of the pyramid has no weight on her
back. People B and C each carry half of person A's weight, so
each shoulders 80 pounds. Uncomfortable, but not too bad.

Now, look at the people in the third row. Focus on person E.
How much weight is she supporting? Well, she’s directly sup-
porting half the weight of person B (80 pounds) and half the
weight of person C (80 pounds). On top of this, she’s feeling some of the weight people B and C are car-
rying. Half of the weight that person B shoulders (40 pounds) gets transmitted to person E and half the
weight person C shoulders (40 pounds) similarly gets sent down to person E, so person E ends up feeling
an extra 80 pounds. That means she’s supporting a net total of 240 pounds. That’s going to be noticeable!

Not everyone in that third row is feeling the same amount, though. Look at person D for example. The
only weight on person D comes from person B. Person D therefore ends up supporting

• half of person B’s body weight (80 pounds), plus
• half of the weight person B is holding up (40 pounds),

so person D ends up supporting 120 pounds, only half of what E is feeling! Going deeper in the pyra-
mid, how much weight is person H feeling? Well, person H is supporting

• half of person D’s body weight (80 pounds),
• half of person E’s body weight (80 pounds), plus
• half of the weight person D is holding up (60 pounds), plus
• half of the weight person E is holding up (120) pounds.

The net effect is that person H is carrying 340 pounds – ouch! A similar calculation shows that person I
is also carrying 340 pounds – can you see why? Compare this to person G. Person G is supporting

• half of person D’s body weight (80 pounds), plus
• half of the weight person D is holding up (60 pounds),

for a net total of 140 pounds. That’s a lot, but it’s not nearly as bad as what person H is feeling! Finally,
let’s look at poor person M in the middle of the bottom row. How is he doing? Well, he’s supporting

• half of person H’s body weight (80 pounds),
• half of person I’s body weight (80 pounds),
• half of the weight person H is holding up (170 pounds), and
• half of the weight person I is holding up (170 pounds),

for a net total of 500 pounds. Yikes! No wonder he looks so unhappy.

There's a nice, general pattern here that lets us compute how much weight is on each person's back:

• Each person weighs exactly 160 pounds.
• Each person supports half the body weight of each of the people immediately above them, plus

half of the weight that each of those people are supporting.

The question then becomes – given some person in the pyramid, how much weight are they supporting?

4 / 11

Milestone 1: The Initial Implementation
Using the pattern mentioned above, as your first milestone for this problem, write a recursive function

double weightOnBackOf(int row, int col, int pyramidHeight);

that takes as input the row and column number of a person in a human pyramid, along with the number
of rows in the pyramid (its height), then returns the total weight on that person's back.

The coordinate system we’re using for these pyramids works as follows. Rows increase from top to bot-
tom. The topmost row is row 0, the row below that is row 1, then row 2, etc. Columns increase from left
to right, with the leftmost person in each row being in col-
umn 0, the person to their right being in column 1, etc.

If the provided (row, col) position passed into weightOn-
BackOf is out of bounds you should use the error() func-
tion to report an error. For example, if you’re asked to look
up position (-1, 0), or position (2, 3), you’d always report an
error. Position (3, 1) is in-bounds provided that the pyra-
mid height is at least four, but would be out of bounds if
the pyramid height was one, two, or three.

Your implementation of weightOnBackOf must be imple-
mented recursively. Test your solution thoroughly! You
should write at least one test before moving on.

To summarize, here’s what you need to do:

Milestone 1:

1. Add at least one test to HumanPyramids.cpp to cover a case not tested by the other test
cases. This is a great opportunity to check that you understand the problem setup.

2. Implement the weightOnBackOf function from HumanPyramids.cpp to report the weight
on the back of the indicated person in a human pyramid. Test your solution thoroughly be-
fore proceeding, noting that your implementation will be slow if you look deep in the pyra-
mid. Don’t forget to call error() if the input coordinates are out of bounds!

Some notes on this first milestone:

• Remember that the int and double types are distinct in C++, and be careful not to mix them
up. Your weight calculations should be done with doubles.

• Due to the way that the double type works in C++, the values that you get back from your pro-
gram in large pyramids might contain small rounding errors that make the value close to, but not
exactly equal to, the true value (we’re talking about very small errors – less than a part in a thou-
sand). Don’t worry if this happens.

Milestone 2: Speeding Things Up
When you first code up this function, you'll find that it's pretty quick to tell you how much weight is on
the back of the person in row 5, column 3, but that it takes a long time to say how much weight is on the
back of the person in row 30, column 15. Why is this?

Think about what happens if we call weightOnBackOf(30, 15). (For simplicity of exposition in this
section, we’re going to leave off the height parameter.) This makes two new recursive calls: one to
weightOnBackOf(29, 14), and one to weightOnBackOf(29, 15). This first recursive call in turn fires
off two more: one to weightOnBackOf(28, 13), and another to weightOnBackOf(28, 14). The second
recursive call then calls weightOnBackOf(28, 14) and weightOnBackOf(28, 15).

5 / 11

Notice that there are two calls to weightOnBackOf(28, 14) here. This means that there's a redundant
call being made to weightOnBackOf(28, 14), so all the work done to compute that intermediate an-
swer is done twice. That call will in turn fire off its own redundant recursive calls, which in turn fire off
their own redundant calls, etc. This might not seem like much, but the number of recursive calls can be
huge. For example, calling weightOnBackOf(30, 15) makes over 600,000,000 recursive calls!

There are many techniques for eliminating redundant calls. One common approach is memoization (no,
that's not a typo). Intuitively, memoization works by making an auxiliary table keeping track of all the
recursive calls that have been made before and what value was returned for each of them. Then, when-
ever a recursive call is made, the function first checks the table before doing any work. If the the recur-
sive call has already been made in the past, the function just returns that stored value. This prevents val -
ues from being computed multiple times, which can dramatically speed things up!

In pseudocode, memoization looks something like this:

// ========== Before ========== //
Ret recursiveFunction(Arg a) {
 if (base-case-holds) {
 return base-case-value;
 } else {
 do-some-work;
 return recursive-step-value;
 }
}

// ================ After ================ //
Ret recursiveFunction(Arg a, Table& table) {
 if (base-case-holds) {
 return base-case-value;
 } else if (table contains a) {
 return table[a];
 } else {
 do-some-work;
 table[a] = recursive-step-value;
 return recursive-step-value;
 }
}

In the above pseudocode, we’re making reference to a type called Table. There isn’t actually a type Ta-
ble; rather, it’s a placeholder for “some type that you can use to look up a value associated with the ar-
guments to the function.” We’ll leave it up to you to decide what type is best for this.

As a final step, modify weightOnBackOf so that it uses memoization to avoid recomputing values un-
necessarily. The weightOnBackOf function must still take the same arguments as before, since our
starter code expects to be able to call it with just three arguments (row, column, and height), so you’ll
need to make it a wrapper function. Once you've done that, try comparing how long it takes to evaluate
weightOnBackOf(40, 20) both with and without memoization. Notice a difference? For fun, try com-
puting weightOnBackOf(200, 100). This will take a staggeringly long time to complete without mem-
oization – the sun will probably burn out before you get an answer – but with memoization you should
get back an answer instantly!

To summarize what you need to do:

Milestone 2:
Speed up your implementation by modifying it to use memoization. Test your solution thoroughly
using our provided tests, plus any others you add.

One of the bigger questions you’ll need to think through is what type to use to represent the memoiza -
tion table. There are lots of different options here. Fundamentally, you need something where you can
input a (row, col) pair and get back a value. There are lots of containers you can use for this, and lots of
ways to represent (row, col) pairs. Some are easier to work with than others. Try things out and see what
you find!

Once you’ve finished this milestone, choose the “Human Pyramids” option from the menu bar at the top
of the program and drag the slider around to change the height of the pyramid. What numbers do you
get back? Does that surprise you?

6 / 11

Problem Three: What Are YOU Doing?
In conversational English, emphasizing different words in a sentence can change its meaning. For exam-
ple, the statement

“what are YOU doing?”

places the emphasis on the person being spoken to, with the connotation being “what are you, as op-
posed to the other people here, doing?” On the other hand, the statement

“what are you DOING?”

puts the emphasis on “doing,” with the connotation that the speaker is exasperated or surprised by the
listener’s behavior. Contrast that with

“WHAT ARE YOU DOING?,”

which sounds like someone is shouting, or

“what ARE you doing?,”

which reads as a request for clarification about what the listener happens to be doing at the moment.

All in all, there are sixteen different ways we could emphasize the words in this sentence:

what are you doing?
what are you DOING?
what are YOU doing?
what are YOU DOING?
what ARE you doing?
what ARE you DOING?
what ARE YOU doing?
what ARE YOU DOING?

WHAT are you doing?
WHAT are you DOING?
WHAT are YOU doing?
WHAT are YOU DOING?
WHAT ARE you doing?
WHAT ARE you DOING?
WHAT ARE YOU doing?
WHAT ARE YOU DOING?

Your task is to write a function

HashSet<string> allEmphasesOf(const string& sentence);

that takes as input a string containing a sentence, then returns a HashSet containing all the ways of
capitalizing the words in that sentence.

The input to this function is a string representing a sentence. It’s probably a lot easier to work not with a
single string representing a whole sentence, but with a Vector<string> representing all the pieces of
that sentence. For this purpose, we’ve provided you with

Vector<string> tokenize(const string& sentence);

which takes as input a sentence, then returns a Vector<string> representing the individual units that
make up that sentence. For example, given the input

Quoth the raven, "Nevermore."

the tokenize function would return the Vector<string> shown here:

Quoth the raven , " Nevermore . "

Overall, calling allEmphasesOf("Quoth the raven, \"Nevermore.\"") should return these strings:

quoth the raven, "nevermore."
quoth the raven, "NEVERMORE."
quoth the RAVEN, "nevermore."
quoth the RAVEN, "NEVERMORE."
quoth THE raven, "nevermore."
quoth THE raven, "NEVERMORE."
quoth THE RAVEN, "nevermore."
quoth THE RAVEN, "NEVERMORE."

QUOTH the raven, "nevermore."
QUOTH the raven, "NEVERMORE."
QUOTH the RAVEN, "nevermore."
QUOTH the RAVEN, "NEVERMORE."
QUOTH THE raven, "nevermore."
QUOTH THE raven, "NEVERMORE."
QUOTH THE RAVEN, "nevermore."
QUOTH THE RAVEN, "NEVERMORE."

7 / 11

These strings are formed by considering all possible ways of rendering each word in both upper-case
and lower-case, keeping the rest of the input string (spaces, commas, periods, etc.) unchanged.

Test your code thoroughly! Our provided starter code has some sample tests included, but they aren’t ex-
haustive and you’ll need to expand them. You will need to write at least one custom test case, and we
recommend adding even more.

To summarize:

1. Implement the function allEmphasesOf in WhatAreYouDoing.cpp so that it returns a set
of all the different ways the words in the input sentence can be capitalized. The non-word
strings in the sentence should be included in the output unchanged from the original. Use
our provided tokenize function to split the input string apart into individual units.

2. Add at least one test case in to the list of test cases, then test thoroughly.

3. After your code passes all the tests, play around with the demo app to have some fun with
your program.

Some notes on this problem:

• You should completely ignore the initial capitalization of the words in the input sentence. For
example, the result of calling allEmphasesOf on the strings "Happy birthday!," "HAPPY
BIRTHDAY!," and "hApPy BiRtHdAy!" should all be the same.

• To check if a string represents a word, check if its first character is a letter. Use the isalpha
function from the header file <cctype> to do this. You don’t need to handle the case where a
string has letters in it but not in the first position.

• Use the toUpperCase and toLowerCase functions from "strlib.h" to convert a string to up-
per-case or lower-case. Be careful – these functions don’t modify their arguments, and instead
return new strings with the case of the letters changed.

• There may not be any words in the input sentence. For example, the input sentence might just be
a smiley face emoticon (":-)") or a series of numbers ("867-5309").

• You don’t need to – and in fact, shouldn’t – use the stringSplit function or TokenScanner
type to break the original string apart into words. Instead, rely on our handy tokenize function,
which we’ve written for you specifically for this assignment.

• Make sure that your solution doesn’t generate the same string more than once. In particular,
make sure that your solution doesn’t call toUpperCase or toLowerCase on non-word tokens. If
your recursion branches, making one call where the punctuation symbol is converted to upper
case and another call where the punctuation symbol is converted to lower case, then it will do a
lot of unnecessary work regenerating the same strings twice. (Do you see why?)

8 / 11

Problem Four: Shift Scheduling
(We recommend completing Problem Three before starting on this part of the assignment.)

You’re in charge of a small business and have just hired a new part-time employee with flexible hours to
help out. You’d like to schedule her hours in a way that gets her to produce the most value.

For each shift, you have an estimate of how much money the employee would produce if she worked
that shift. Ideally, you’d have her work every shift, but alas, that isn’t possible. There are two restrictions.
First, the employee has a limited number of hours she’s allowed to work each week. Second, you can’t
assign the employee to work concurrent shifts. (As great a hire as she was, she can only be in one place
at one time). Given these restrictions, what shifts should you assign to your new hire?

For example, imagine that your new employee is available for twenty hours each week. There’s a variety
of tasks she could do, each of which has different shifts. Here’s the different shifts she could take, as
well as how much value (measured in dollars) she’ll produce in each:

Mon 8AM - 12PM: $27
Mon 12PM - 4PM: $28
Mon 4PM - 8PM: $25
Mon 8AM - 2PM: $39
Mon 2PM - 8PM: $31

Tue 8AM - 12PM: $7
Tue 12PM - 4PM: $7
Tue 4PM - 8PM: $11
Tue 8AM - 2PM: $10
Tue 2PM - 8PM: $8

Wed 8AM - 12PM: $10
Wed 12PM - 4PM: $11
Wed 4PM - 8PM: $13
Wed 8AM - 2PM: $19
Wed 2PM - 8PM: $25

So, when should she come in to work? You might be eyeing the high-value Monday 8:00AM – 2:00PM
and 2:00PM – 8:00PM time slots. That would bring in a full $70, using up twelve of her permitted
twenty hours. You might then have her spend her remaining eight hours Wednesday afternoon in the
12:00PM – 4:00PM and 4:00PM – 8:00PM shifts, netting you another $24 for a total take-home of $94.

With a little creativity, though, you might note that you actually would make more if instead of having
her work eight hours on Wednesday in two four-hour time slots, you instead had her work six hours
from 2:00PM – 8:00PM and bring in $25 of value, simultaneously upping your total take-home to $95
and giving her two free hours.

Even this isn’t optimal – as enticing as those $39 and $31 time slots on Monday are, it’s actually better to
have your employee work the three four-hour shifts on Monday, bringing in $27, $28, and $25, respec-
tively, for a total of $80 on Monday. Overall, if you pick the three four-hour shifts on Monday and the
closing six-hour shift on Wednesday, your new hire is bringing in $105 and clocking in only eighteen
hours, below the twenty-hour limit.

Your task is to write a function

HashSet<Shift> highestValueScheduleFor(const HashSet<Shift>& shifts, int maxHours);

that takes as input a HashSet of all the possible shifts, along with the maximum number of hours the
employee is allowed to work for, then returns which shifts the employee should take in order to generate
the maximum amount of value. Here, Shift is a struct containing information about when the shift is
(what day of the week it is, when it starts, and when it ends). It’s defined in the header file Shift.h.
Chances are that you won’t need to read any of the fields of this struct, and that instead you’ll want to
use these functions from Shift.h:

int lengthOf(const Shift& shift); // Returns the length of a shift.

int valueOf(const Shift& shift); // Returns the value of this shift.

bool overlapsWith(const Shift& one, // Returns whether two shifts overlap.
 const Shift& two);

Now, let’s talk strategy. We recommend approaching this problem in the following way. Select, however
you’d like, some shift out of shifts. If the employee can’t take this shift, either because it overlaps with
a shift she’s already been assigned or because it would exceed her total hour limit, then the only option is
to not give the employee that shift. Otherwise, there are two options: you could either give the employee
the shift, or not give the employee the shift. One of these two options will be better than the other, or
they’ll be tied for how much value is produced. You won’t know which one is better until you try them
out, so (recursively) explore both options and report whichever one leads to more value.

9 / 11

As you’re working on this one, make sure to test thoroughly! If you have forty or so shifts to pick from,
it’ll be extremely difficult to determine whether your code produces the best option simply by eyeballing
the answer. Instead, craft smaller examples (say, with between zero and five shifts) and see how your
code does. Think of all the tricksy cases that might arise – long shifts that aren’t worth much, short shifts
worth a lot, overlapping shifts that are equally good, etc. – and make sure your code handles those cases
well. We’ve included some tests for you to use when you’re getting started, and there’s at least one case
we know of that we didn’t test for. As usual, you’ll need to add at least one custom test case of your own.

With that said, here’s what you need to do:

1. Implement highestValueScheduleFor using the strategy we outlined above. Select some
shift and think about what happens if you assign the employee that shift (if that’s even an
option) and what happens if you don’t assign the employee that shift. Take whichever op-
tion leads to a better result, and report the set of shifts you’d pick if you chose that route.
Use the error() function to report an error if numHours < 0.

2. Add at least one test using ADD_TEST. Ideally, test something not already covered.

Some notes on this problem:

• You may find it easiest to work on this in stages. First, solve this problem ignoring the restriction
that you can’t pick two overlapping shifts. Then, once you have that version working, edit your
solution to enforce that you can’t pick overlapping shifts.

• If multiple schedules are tied for producing the most value, you’re free to choose any of them.

• While you are allowed to look directly at the fields of the Shift struct, we don’t recommend
this. Use the helper functions mentioned on the previous page instead.

• The best schedule might not use up all of the employee’s available hours.

• The values assigned to shifts can be arbitrary. It might be the case that a shift from 2PM to 4PM
produces ten units of value while another from 10AM to 6PM the same day produces four.

• It’s fine if the worker has zero available hours – that just means that she’s really busy that week –
but if maxHours is negative you should call error() to report an error.

Once you’ve finished writing your solution, try running our demo program, which will let you generate
random weights on some standard shift sets and see what schedules end up getting chosen.

Here’s something to think about. Some companies assign different shifts to workers each week, and they
do so by running code that’s pretty similar to the code you wrote here, feeding in weekly forecasts. As
you can see from the demo program, this can easily lead to schedules that vary wildly from week to
week. If the person you’re hiring needs to arrange for child care each week, this rapid swing in shift se -
lection can be extremely stressful. In fact, this has been so rough on workers that it made national news.

So take a look at the code that you wrote. We assume that nothing in your code says something like this:

if (isSingleMother()) {
 chooseShiftsArbitrarilyAndCapriciously();
} else {
 chooseStableShifts();
}

Instead, what’s happening here is that your code is designed to purely optimize a single quantity – the
amount of revenue generated by the employee – and doesn’t take anything else into account. Your code
isn’t malicious; it just oblivious to the surrounding context.

The lesson here is to be careful about what you optimize. Computers can help you find strategies that
maximize lots of different quantities. Make sure you pick a quantity that takes in the perspectives of all
the stakeholders in a situation. Get it right and you end up with schedules where workers are happy and
companies make money. Get it wrong and you significantly impair quality of life.

10 / 11

https://www.nytimes.com/interactive/2014/08/13/us/starbucks-workers-scheduling-hours.html

(Optional) Problem Five: Extensions!
Want more to explore? Here are a few suggestions to help you get started. As always, if you’re planning
on doing extensions, please submit two versions of your assignment – one with extensions and one with-
out – so that grading goes more smoothly.

• Sierpinski Triangle: The Sierpinski triangle is only one of many self-similar images; consider
coding up another! We’d love to see what you create. Alternatively, although this assignment is
all about recursion, if you're up for a challenge, try replacing the recursive version of your code
with an iterative function that draws an order-n Sierpinski triangle. Which one did you find eas-
ier to write?

• Human Pyramids: There's another way to avoid making multiple recursive calls called dynamic
programming that's equivalent to memoization, but uses iteration rather that recursion. Look up
dynamic programming and try coding this function up both ways. Which one do you find easier?
Another question to consider: We assumed everyone in the pyramid weighed exactly 160
pounds. What if that’s not the case? How much weight does everyone feel then?

• What Are YOU Doing?: This problem put stress patterns onto a particular structure (words in
sentences), but that idea can be used in other contexts as well. What would music sound like if
you emphasized certain notes and not others? Could you produce all the ways of pronouncing
certain words by changing the stress patterns on the syllables?

• Shift Scheduling: The discussion at the end of the shift scheduling problem points out a weak-
ness in how that algorithm works. What changes might you make to the shift scheduler to make
it produce more stable schedules from week to week? How do you balance workers’ needs for
predictability with management’s goal of increasing profits? For a more algorithmic question, if
you’re careful with how you set up the recursion, you can actually add memoization into this
problem and dramatically speed things up. This will only work if you find yourself encountering
the exact same subproblems over and over again. See if you can find a way to make this work!

General Notes
Here's some clarifications, notifications, expectations, and recommendations for this assignment.

• Your functions must actually use recursion; it defeats the point of the assignment to solve these
problems iteratively! That being said, as you’ll see in lecture next week, it’s perfectly alright for
recursive functions to contain loops. The main question is whether your solution fundamentally
works by breaking problems down into smaller copies of themselves. If so, great! If not, you
may want to revisit your solution.

• Test your code thoroughly! We’ve included some test cases with the starter files, but they aren’t
exhaustive. Be sure to add tests as you go!

• Recursion can take some time to get used to, so don’t be dismayed if you can’t immediately sit
down and solve these problems. We’ve allowed you to work in pairs on this assignment so that
you can discuss ideas with a partner, which can be a great way build an intuition for the con-
cepts. Ask for advice and guidance if you need it. Once everything clicks, you’ll have a much
deeper understanding of just how cool a technique this is. We’re here to help you get there!

Submission Instructions
Once you’ve worked through the Assignment Submission Checklist and your code is ready to go, please
submit the files Sierpinski.cpp, HumanPyramids.cpp, WhatAreYouDoing.cpp, and ShiftSchedul-
ing.cpp at https://paperless.stanford.edu. If you edited any other files, please include them as well, but
otherwise please just submit these four files. And that’s it! You’re done!

Good luck, and have fun!

11 / 11

https://paperless.stanford.edu/

	Problem One: The Sierpinski Triangle
	To summarize, here’s what you need to do:
	1. Implement the drawSierpinskiTriangle function in Sierpinski.cpp. Don’t forget to handle the case where the order is negative.
	2. Use the “Interactive Sierpinski” option to check your work. In particular, make sure your triangle looks correct after dragging the corner points around and changing the order of the triangle via the slider in the bottom of the window.
	Once you’ve gotten that working, click “Sierpinski Bungee Jump” to see just how deep the recursion rabbit hole goes. And yes, that’s your code powering the bungee jump. We’re just specifying coordinates. 😃
	Some notes on this problem:
	Draw pictures! The meat of this part of the assignment is figuring out where each triangle’s corners are, and that’s much easier to do with a schematic in front of you.
	Some helpful math: the midpoint of a line segment whose endpoints are (x₁, y₁) and (x₂, y₂) is located at positionYou may find this useful when determining where the corners of the smaller triangles are.
	The three corner points of the triangle don’t necessarily have to form an equilateral triangle or be parallel to the base or side of the window. There isn’t any particular ordering to which corner is given by (x₀, y₀), which is given by (x₁, y₁), and which is given by (x₂, y₂).
	Repeating a point from earlier – you should only draw the black triangles that make up the Sierpinski triangle. The white parts of the triangle are, in a sense, “negative space;” they’re the regions where nothing is drawn.
	The only function you should call to draw things in the window is drawTriangle, which we mentioned earlier in this handout. You don’t need to, say, call the drawPolarLine function from lecture or anything like that.
	Don’t forget to call error() in the case where the order is less than zero.
	Our coordinate system uses real numbers. Remember that C++ has separate types for integers and real numbers and be careful not to mix the two up.
	Problem Two: Human Pyramids
	Milestone 1: The Initial Implementation

	Milestone 1:
	1. Add at least one test to HumanPyramids.cpp to cover a case not tested by the other test cases. This is a great opportunity to check that you understand the problem setup.
	2. Implement the weightOnBackOf function from HumanPyramids.cpp to report the weight on the back of the indicated person in a human pyramid. Test your solution thoroughly before proceeding, noting that your implementation will be slow if you look deep in the pyramid. Don’t forget to call error() if the input coordinates are out of bounds!
	Milestone 2: Speeding Things Up

	Milestone 2:
	Speed up your implementation by modifying it to use memoization. Test your solution thoroughly using our provided tests, plus any others you add.
	Problem Three: What Are YOU Doing?
	In conversational English, emphasizing different words in a sentence can change its meaning. For example, the statement
	“what are YOU doing?”
	places the emphasis on the person being spoken to, with the connotation being “what are you, as opposed to the other people here, doing?” On the other hand, the statement
	“what are you DOING?”
	puts the emphasis on “doing,” with the connotation that the speaker is exasperated or surprised by the listener’s behavior. Contrast that with
	“WHAT ARE YOU DOING?,”
	which sounds like someone is shouting, or
	“what ARE you doing?,”
	which reads as a request for clarification about what the listener happens to be doing at the moment.
	All in all, there are sixteen different ways we could emphasize the words in this sentence:
	what are you doing?
	what are you DOING?
	what are YOU doing?
	what are YOU DOING?
	what ARE you doing?
	what ARE you DOING?
	what ARE YOU doing?
	what ARE YOU DOING?
	WHAT are you doing?
	WHAT are you DOING?
	WHAT are YOU doing?
	WHAT are YOU DOING?
	WHAT ARE you doing?
	WHAT ARE you DOING?
	WHAT ARE YOU doing?
	WHAT ARE YOU DOING?
	Your task is to write a function
	HashSet<string> allEmphasesOf(const string& sentence);
	that takes as input a string containing a sentence, then returns a HashSet containing all the ways of capitalizing the words in that sentence.
	The input to this function is a string representing a sentence. It’s probably a lot easier to work not with a single string representing a whole sentence, but with a Vector<string> representing all the pieces of that sentence. For this purpose, we’ve provided you with
	Vector<string> tokenize(const string& sentence);
	which takes as input a sentence, then returns a Vector<string> representing the individual units that make up that sentence. For example, given the input
	Quoth the raven, "Nevermore."
	the tokenize function would return the Vector<string> shown here:
	Overall, calling allEmphasesOf("Quoth the raven, "Nevermore."") should return these strings:
	quoth the raven, "nevermore."
	quoth the raven, "NEVERMORE."
	quoth the RAVEN, "nevermore."
	quoth the RAVEN, "NEVERMORE."
	quoth THE raven, "nevermore."
	quoth THE raven, "NEVERMORE."
	quoth THE RAVEN, "nevermore."
	quoth THE RAVEN, "NEVERMORE."
	QUOTH the raven, "nevermore."
	QUOTH the raven, "NEVERMORE."
	QUOTH the RAVEN, "nevermore."
	QUOTH the RAVEN, "NEVERMORE."
	QUOTH THE raven, "nevermore."
	QUOTH THE raven, "NEVERMORE."
	QUOTH THE RAVEN, "nevermore."
	QUOTH THE RAVEN, "NEVERMORE."
	These strings are formed by considering all possible ways of rendering each word in both upper-case and lower-case, keeping the rest of the input string (spaces, commas, periods, etc.) unchanged.
	Test your code thoroughly! Our provided starter code has some sample tests included, but they aren’t exhaustive and you’ll need to expand them. You will need to write at least one custom test case, and we recommend adding even more.
	To summarize:
	1. Implement the function allEmphasesOf in WhatAreYouDoing.cpp so that it returns a set of all the different ways the words in the input sentence can be capitalized. The non-word strings in the sentence should be included in the output unchanged from the original. Use our provided tokenize function to split the input string apart into individual units.
	2. Add at least one test case in to the list of test cases, then test thoroughly.
	3. After your code passes all the tests, play around with the demo app to have some fun with your program.
	Problem Four: Shift Scheduling
	(We recommend completing Problem Three before starting on this part of the assignment.)
	You’re in charge of a small business and have just hired a new part-time employee with flexible hours to help out. You’d like to schedule her hours in a way that gets her to produce the most value.
	For each shift, you have an estimate of how much money the employee would produce if she worked that shift. Ideally, you’d have her work every shift, but alas, that isn’t possible. There are two restrictions. First, the employee has a limited number of hours she’s allowed to work each week. Second, you can’t assign the employee to work concurrent shifts. (As great a hire as she was, she can only be in one place at one time). Given these restrictions, what shifts should you assign to your new hire?
	For example, imagine that your new employee is available for twenty hours each week. There’s a variety of tasks she could do, each of which has different shifts. Here’s the different shifts she could take, as well as how much value (measured in dollars) she’ll produce in each:
	Mon 8AM - 12PM: $27 Mon 12PM - 4PM: $28 Mon 4PM - 8PM: $25 Mon 8AM - 2PM: $39 Mon 2PM - 8PM: $31
	Tue 8AM - 12PM: $7 Tue 12PM - 4PM: $7 Tue 4PM - 8PM: $11 Tue 8AM - 2PM: $10 Tue 2PM - 8PM: $8
	Wed 8AM - 12PM: $10 Wed 12PM - 4PM: $11 Wed 4PM - 8PM: $13 Wed 8AM - 2PM: $19 Wed 2PM - 8PM: $25
	So, when should she come in to work? You might be eyeing the high-value Monday 8:00AM – 2:00PM and 2:00PM – 8:00PM time slots. That would bring in a full $70, using up twelve of her permitted twenty hours. You might then have her spend her remaining eight hours Wednesday afternoon in the 12:00PM – 4:00PM and 4:00PM – 8:00PM shifts, netting you another $24 for a total take-home of $94.
	With a little creativity, though, you might note that you actually would make more if instead of having her work eight hours on Wednesday in two four-hour time slots, you instead had her work six hours from 2:00PM – 8:00PM and bring in $25 of value, simultaneously upping your total take-home to $95 and giving her two free hours.
	Even this isn’t optimal – as enticing as those $39 and $31 time slots on Monday are, it’s actually better to have your employee work the three four-hour shifts on Monday, bringing in $27, $28, and $25, respectively, for a total of $80 on Monday. Overall, if you pick the three four-hour shifts on Monday and the closing six-hour shift on Wednesday, your new hire is bringing in $105 and clocking in only eighteen hours, below the twenty-hour limit.
	Your task is to write a function
	HashSet<Shift> highestValueScheduleFor(const HashSet<Shift>& shifts, int maxHours);
	that takes as input a HashSet of all the possible shifts, along with the maximum number of hours the employee is allowed to work for, then returns which shifts the employee should take in order to generate the maximum amount of value. Here, Shift is a struct containing information about when the shift is (what day of the week it is, when it starts, and when it ends). It’s defined in the header file Shift.h. Chances are that you won’t need to read any of the fields of this struct, and that instead you’ll want to use these functions from Shift.h:
	int lengthOf(const Shift& shift); // Returns the length of a shift.
	int valueOf(const Shift& shift); // Returns the value of this shift.
	bool overlapsWith(const Shift& one, // Returns whether two shifts overlap. const Shift& two);
	Now, let’s talk strategy. We recommend approaching this problem in the following way. Select, however you’d like, some shift out of shifts. If the employee can’t take this shift, either because it overlaps with a shift she’s already been assigned or because it would exceed her total hour limit, then the only option is to not give the employee that shift. Otherwise, there are two options: you could either give the employee the shift, or not give the employee the shift. One of these two options will be better than the other, or they’ll be tied for how much value is produced. You won’t know which one is better until you try them out, so (recursively) explore both options and report whichever one leads to more value.
	As you’re working on this one, make sure to test thoroughly! If you have forty or so shifts to pick from, it’ll be extremely difficult to determine whether your code produces the best option simply by eyeballing the answer. Instead, craft smaller examples (say, with between zero and five shifts) and see how your code does. Think of all the tricksy cases that might arise – long shifts that aren’t worth much, short shifts worth a lot, overlapping shifts that are equally good, etc. – and make sure your code handles those cases well. We’ve included some tests for you to use when you’re getting started, and there’s at least one case we know of that we didn’t test for. As usual, you’ll need to add at least one custom test case of your own.
	With that said, here’s what you need to do:
	1. Implement highestValueScheduleFor using the strategy we outlined above. Select some shift and think about what happens if you assign the employee that shift (if that’s even an option) and what happens if you don’t assign the employee that shift. Take whichever option leads to a better result, and report the set of shifts you’d pick if you chose that route. Use the error() function to report an error if numHours < 0.
	2. Add at least one test using ADD_TEST. Ideally, test something not already covered.
	Some notes on this problem:
	Once you’ve finished writing your solution, try running our demo program, which will let you generate random weights on some standard shift sets and see what schedules end up getting chosen.
	Here’s something to think about. Some companies assign different shifts to workers each week, and they do so by running code that’s pretty similar to the code you wrote here, feeding in weekly forecasts. As you can see from the demo program, this can easily lead to schedules that vary wildly from week to week. If the person you’re hiring needs to arrange for child care each week, this rapid swing in shift selection can be extremely stressful. In fact, this has been so rough on workers that it made national news.
	So take a look at the code that you wrote. We assume that nothing in your code says something like this:
	if (isSingleMother()) { chooseShiftsArbitrarilyAndCapriciously(); } else { chooseStableShifts(); }
	Instead, what’s happening here is that your code is designed to purely optimize a single quantity – the amount of revenue generated by the employee – and doesn’t take anything else into account. Your code isn’t malicious; it just oblivious to the surrounding context.
	The lesson here is to be careful about what you optimize. Computers can help you find strategies that maximize lots of different quantities. Make sure you pick a quantity that takes in the perspectives of all the stakeholders in a situation. Get it right and you end up with schedules where workers are happy and companies make money. Get it wrong and you significantly impair quality of life.
	(Optional) Problem Five: Extensions!
	General Notes
	Submission Instructions

